London Mathematical Society Lecture Note Series. 238

Representation Theory
and Algebraic Geometry

Edited by

A. Martsinkovsky
Northeastern University

G. Todorov
Northeastern University




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge, CB2 2RU, United Kingdom
40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1997

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1997

A catalogue record for this book is available from the British Library

ISBN 0521 57789 6 paperback

Transferred to digital printing 2002



Contents

Preface

Some problems on three-dimensional graded domains

M. Artin

The mathematical influence of Maurice Auslander in Mexico
Raymundo Bautista

Intertwined with Maurice
David A. Buchsbaum

Introduction to Koszul Algebras
Edward L. Green

Old and recent work with Maurice
Idun Reiten

The development of the representation theory of finite
dimensional algebras 1968-1975
Claus Michael Ringel

Algebraic Geometry over @
Lucien Szpiro

vil

21

31

45

63

89

117



SOME PROBLEMS ON
THREE-DIMENSIONAL GRADED DOMAINS

M. ARTIN

1. Introduction.

One of the important motivating problems for ring theory is to describe
the rings which have some of the properties of commutative rings. In this
talk we consider this problem for graded domains of dimension 3. The
conjectures we present are based on ideas of my friends, especially of Toby
Stafford, Michel Van den Bergh, and James Zhang. However, they may not
be willing to risk making them, because only fragments of a theory exist
at present. Everything here should be taken with a grain of salt. I am
especially indebted to Toby Stafford for showing me some rings constructed
from differential operators which I had overlooked in earlier versions of this
manuscript.

To simplify our statements, we assume throughout that the ground field &
is algebraically closed and of characteristic zero, and that our graded domain
A is generated by finitely many elements of degree 1. The properties which
we single out are:

1.1.
(i) A is noetherian,
(i) there is a dualizing complex w for A such that the Auslander conditions
hold, and
(iii) the Gelfand-Kirillov dimension behaves as predicted by commutative
algebra.

A dualizing complez w is a complex of bimodules such that the functor
M — MP = RHom(M,w) defines a duality between the derived categories
of bounded complexes of finite left and right A-modules. We will require
it to be balanced in the sense of Yekutieli, which means that kP is the
appropiate shift of k (see [Aj,Y1,Y2] for the precise definitions). A graded
ring A with a dualizing complex satisfies the Auslander conditions if for any
finite A-module M and any submodule N C Ext?(M,w), Ext?(N,w) =0
for p < q [Bj,Le,Y1,Y2,ASZ].

Typeset by ApsS-TEX



2 ARTIN: Problems on three-dimensional graded domains

Let .
J(M) = min{j| Ext’(M,w) # 0)}.

For domains of dimension 3, the link with Gelfand-Kirillov dimension is that
gk(M) = 3 — j(M) [Le,Ye2,YZ]. Actually, the GK-dimension is not always
the right dimension to use (see [ASZ]), but it will suffice for our purposes.

Though the properties listed above are central, they will appear only
implicitly in what follows. All of them hold when A is commutative. So
our problem becomes: Which graded domains satisfy these conditions? An
answer to this question might take the form of an axiomatic description,
or of a classification. This talk concerns classification, for which I should
apologize. Maurice looked askance at what he might have called “botany”,
so the topic is not very suitable for the Auslander Conference.

Let’s begin by reviewing the commutative case. If a commutative graded
algebra A is written as a quotient k{zo, ..., z,]/I, where [ is an ideal gener-
ated by some homogeneous polynomials fi,..., fr, then its associated pro-
jective scheme X = Proj A is the locus of common zeros of fi,..., f, in
projective space P™. Conversely, if we are given a projective scheme X, we
can recover a graded algebra A as follows: For n 3> 0, A, is the space of all
functions on X with pole of order < n at infinity. (The relations between
A and Proj A hold only in large degree.)

In order to proceed, we need to rewrite this description in terms of sec-
tions of invertible sheaves. Let L denote the invertible sheaf of locally
defined functions on X with pole of order < 1 at infinity. Then L®" is the
sheaf of local functions with pole of order < n, so we can identify global
functions with pole of order < n at infinity with global sections of this sheaf:
Forn > 0, A, = H°(X, L®"). Multiplication in A is induced by the tensor
product on L.

Van den Bergh [AV] has shown how to extend this description to con-
struct noncommutative rings. He observes that in order for L®" to be
defined, L must have both a left and a right module structure over the
structure sheaf Ox, i.e., it must be an (O, O)-bimodule. It is not necessary
that the actions on the left and on the right agree; in fact this would be
inconsistent if O weren’t commutative. But if L is a bimodule, invertible as
left and as right module, then L®" is defined, and setting B, = H°(X, L®")
vields a graded algebra B which is often noncommutative. Of course, in or-
der that B have reasonable properties, the bimodule L must satisfy a con-
dition analogous to “ampleness” of an invertible sheaf in the commutative

case (see [AV]).

The use of bimodules to define a polarization extends to certain noncom-
mutative schemes X as well. But when X is commutative, it is not difficult
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to see that the left and right actions on an invertible bimodule L differ by
an automorphism 7 of the scheme X. In other words, the right action will
be obtained from the left one by the rule

vf = fTv,

for v € L and f € O. The bimodule obtained in this way from an automor-
phism will be denoted by L., and we will use the notation B(X,r, L) for
the algebra defined in this way, i.e., the algebra whose part of degree n is
B, = H°(X,L%").

We now consider a noncommutative graded domain A. Thanks to the
work of Stafford [ASt], the case that A has GK-dimension 2 is well under-
stood:

Theorem 1.2. Let B be a graded domain of GK-dimension 2 which is
finitely generated by elements of degree 1. Then:

(i) ProjB is a commutative algebraic curve. More precisely, there is
a projective algebraic curve C, an automorphism 7 of C, and an
invertible sheaf L of positive degree on C such that, for large n,
B, = H°(C,L®").

(ii) The algebra B has the desired properties 1.1.

Note that this theorem is free of extraneous hypotheses, except for the
requirement that A be generated in degree 1, which may seem artificial.
In fact, as is explained in [ASt], the situation becomes considerably more
complicated when this requirement is dropped.

Following the example of the Italian algebraic geometers at the end of
the last century, we may attempt to classify the noncommutative projective
surfaces which arise as Proj A4, for certain graded domains of GK-dimension
3. The object of this talk is to present a conjecture about them.

2. Examples of graded domains of GK-dimension 3.

There are many examples which show that Theorem 1.2 does not extend
directly to higher dimension. It is true that one can construct noncommu-
tative domains of GK-dimension 3 analogous to those of GK-dimension 2
by means of a suitable commutative algebraic surface X, automorphism 7,
and invertible sheaf L. But other noncommutative domains exist, and those
are the ones that one would like to describe. Here are four basic types:

Example 2.1. Algebras finite over their centers.

Algebras which are finite over their centers can be constructed quite simply
from orders. Let K be the function field of a projective algebraic surface
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S, and let D be a division ring with center K and finite over K. Let
A be an Og-order in D. One obtains a noncommutative scheme X =
Spec A by gluing the rings of sections of A over affine open sets of Z, using
central localizations. Then a graded ring A finite over its center can be
defined as follows: Let L denote the sheaf O(1) on S, and set A(n) =
ARoL®" = A(1)®4® - ®4.A(1). Then A, = H°(S, A(n)). Other rings,
not necessarily finite over their centers, can be constructed using (A, A)-
bimodules which which are not central.

Example 2.2. Auslander regular algebras of dimension 3.

A graded domain A of finite global dimension which satisfies the Aus-
lander conditions is called an Auslander regular algebra (see[Le]). The
Auslander regular algebras of dimension 3 have been classified completely
[ASch,ATV], and Schelter’s Sklyanin algebras are the most interesting ones
among them. These are the three-dimensional analogues of some well-known
four-dimensional algebras defined by Sklyanin [Skl]. A Sklyanin algebra
A = A(E, o) of dimension 3 can be defined in a somewhat mysterious way,
in terms of an elliptic curve E embedded as a cubic in P? and a transla-
tion o of E. The associated projective scheme Proj A is a deformation of
the projective plane: a quantum plane [Ar]. The other Auslander regular
algebras of dimension 3, and their associated quantum planes, are obtained
from automorphisms of singular plane cubics.

Example 2.3. Polynomial extensions of domains of GK-dimension 2.

Here B is a graded domain of GK-dimension 2 and A = B[z], where z
is a central variable of degree 1. By Theorem 1.2, B has the form of a
twisted homogeneous coordinate ring of a curve: B = B(C,r,L). If the
automorphism 7 of C has infinite order, then neither B nor A is PI. In
this case, C will be rational or elliptic, and if it is elliptic, then 7 will be a
translation. The case that T is a translation of infinite order on an elliptic
curve is especially interesting.

Example 2.4. Homogenized differential operator rings.

This example is due to Stafford. Let C be a nonsingular curve with structure
sheaf O, and let D denote the sheaf of rings of differential operators on C.
If = denotes a local parameter at a point p € C, then locally at p, D has
the form O,(y), where y is the derivation 3‘1;, and yz = zy + 1. We choose
a point po on C, and consider the subsheaf D’ of D which is equal to D
except at the point po, and which is generated by yo = xo%o at that point,
zo being a local parameter. Thus the relation yozo = zoyo + To holds at
po. This relation shows that, locally, z¢ is a normal element of D', which is
the reason that we replace D by D’. We homogenize the defining relation
of D' using a central variable z, to obtain a sheaf of graded rings A which



ARTIN: Problems on three-dimensional graded doinains 5

has the local form O,(y, z), with the defining relation yozo = zoyo + zoz
at po and yr = zy + z at all other points. The subsheaf A, of elements
of degree n is isomorphic to the sheaf of differential operators which are
in D’ and which have order < n. Locally at the point pg, the element z¢
normalizes A. We choose an integer r > 29 — 2 and we denote by £, the
right O-module of sections of A, with pole of order nr at pyg. So locally
at po, a section of L, can be written in the form a,z;"", where a, € A,.
Because z¢ is normalizing, multiplication sends £, X £, = Ly4n, S0 we
obtain a graded ring A4 by setting A, = H°(C,L,).

There are many other interesting graded domains of dimension 3, for
example the guantum gquadrics which are obtained from Sklyanin algebras
of dimension 4 by dividing by a central element of degree 2 [Sm, SStd].

3. A General Description of X = Proj A.

Let A be a noetherian graded ring, and let C denote the category of
finitely generated, graded, right A modules, modulo the subcategory of
torsion modules (modules finite-dimensional over k). This category C = gr-
A/(torsion) can also be described as the category of tails M, of finitely
generated graded A-modules. By definition, the projective scheme X =
Proj A associated to A is the triple {(C, 0, s), where O is image in C of the
right module A4, and s is the autoequivalence of C defined by the shift
operator on graded modules [AZ,Ma,Ve]. Working out the consequences of
this definition is an ongoing program, and we will not need to consider it
in detail. However, we need to review some geometric concepts, namely
of points and fat points. Following tradition, we assume that X = Proj A
is smooth. This means that C has finite injective dimension, or that for
every finite graded A-module M and for ¢ > 2, the graded injectives I? in a
minimal resolution 0 — M — I°® — I! — --. are sums of the injective hull

of k.

Our conditions 1.1 imply that the ring A can be recovered, in sufficiently
large degree, from its associated projective scheme. This means that Zhang’s
condition x, that Ext?(k, M) is finite dimensional for all finite modules M,
holds for A [YZ].

The tail of a critical module M of GK-dimension 1 is called a fat point
of X. Fat points are the projective analogs of finite dimensional represen-
tations of a ring [Sm,SSts]. If the stable Hilbert function dim M,,, n > 0,
is the constant function 1, so that M has multiplicity 1, then the tail Mo
is called a point of X.

We say that X is finite over its center if there is a commutative algebraic
surface S and a coherent Og-algebra A such that X is isomorphic to the
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relative scheme Spec A over S, as in Example 2.1. Specifically, this means
that C is equivalent to the category of coherent as Og-modules with a right
A-module structure, and that s is an ample autoequivalence of C.

In all known examples of graded domains of GK-dimension 3 which satisfy
1.1 and such that X = Proj A is not finite over its center, the scheme X has
some remarkable properties:

3.1. There is a quotient B = A/I of A of pure GK-dimension 2, such that:
(i) Y = ProjB is a commutative projective curve, possibly reducible,
whose points are points of X.
(ii}) X has only finitely many fat points in addition to the pointson Y. In
particular, X has only finitely many fat points of multiplicity # 1.
(iii) The complement of ¥ in X is an affine open subscheme. In other
words, there is a finitely generated noetherian domain R such that
X —Y = SpecR, or that the category mod-R of finite R-modules is
equivalent with the quotient category gr-A/(I — torsion).

A priori, it is not clear that Proj A should have any points at all. This is a
puzzling point.

4. A Conjecture.

The graded quotient ring of a graded Ore domain A has the form Q(A) =
Dlz,271,¢], where D is a division ring and ¢ is an automorphism of D
[NV]. We will refer to the division ring D as the function field of the scheme
X = Proj A, and we will say that two such schemes X, X’ are birationally
equivalent if their function fields are isomorphic extensions of k. If X is
birational to a quantum plane (Example 2.2) we call it a g-rational surface.
If X is birational to one of the surfaces listed in Examples 2.3,2.4 and in
which the curve C has genus g > 0, we call it g-ruled. {There is an intrinsic
definition of g-ruled surface in terms of “bimodule algebras” over a curve

[VdB1].)

Conjecture 4.1. Let k be an algebraically closed field of characteristic
zero, and let A be k-algebra of GK-dimension 3 satisfying the properties
1.1. Then X = Proj A is birationally equivalent to Proj A’, where A’ is
one of the graded domains described in Examples 2.1-2.4. So one of the
following holds:

(i) X is finite over its center,

(ii) X is g-rational, or

(iii) X is g-ruled.

The properties 1.1 are included as hypotheses in this conjecture. Ideally,
we would like them to be consequences of more basic assumptions on the
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structure of A, as is the case in dimension 2 (see Theorem 1.2). However,
we don’t know what the necessary assumptions are. At this stage of our
knowledge, any reasonable hypotheses on the structure are acceptable.

A finer classification would subdivide (i) into two classes:

4.2.
(ia) A finite over its center, and
(ib) A not finite over its center, but X finite over its center.

The possibilities for (ib) can be enumerated conjecturally as well. They
include cases in which X is a commutative surface, such as an abelian
surface, which has a continuous group of automorphisms. (See the last
section of [AV] in this connection.)

It is interesting to note that PI algebras appear as a natural class of
rings in Conjecture 4.1. Indeed, the PI case (ia) should be viewed as the
“general” one. It corresponds roughly to the class of commutative surfaces
of Kodaira dimension > 0, though PI algebras also appear as special cases
in (ii),(iii). There is no hope of listing these rings.

For those of us who are interested in describing noncommutative phe-
nomena, it may, at first glance, seem a bit disappointing to think that
rational and ruled surfaces could be the only ones which have noncommu-
tative analogues not finite over their centers. One must remember that the
most beautiful results of the Italian school, such as the numerical charac-
terizations of rational and ruled surfaces of Castelnuovo and Enriques, and
Castelnuovo’s theorem on the rationality of plane involutions, concern pre-
cisely these surfaces. Whether the conjecture is correct or not, extending
those results to the noncommutative setting is a worthy goal for people
working in ring theory.

5. The Division Rings.

Since Conjecture 4.1 concerns only the birational equivalence classes of
noncommutative surfaces, it can be stated in terms of their function fields.
Here is a list of the division rings which are predicted by the conjecture:

List of Division Rings 5.1. In this list, k is assumed algebraically closed,
of characteristic zero, o denotes a translation by a point of infinite order of
an elliptic curve E, and q € k* is not a root of unity.

1. division rings which are finite algebras over function fields of transcen-
dence degree 2.
2. g-rational division rings:

(a) kq(z,y), the field of fractions of the q-plane yz = qzy.
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(b) the Sklyanin division ring S(E, c), the degree zero part of the graded
field of fractions of the Sklyanin algebra A(E, ).
(¢) D, the field of fractions of the Weyl algebra.
3. g-ruled division rings:
(a) K(E, o), the field of fractions of the Ore extension k(E)[t, o].
(b) D(C), the field of fractions of the ring of differential operators on a
curve C of positive genus.

It is interesting to note that Schelter’s 3-dimensional Sklyanin algebras
provide the only division rings on our list which are relatively new. In fact,
Van den Bergh showed recently that S(E,o) is the ring of invariants in
K(E,o) under the involution defined by the map which sends p = —p in
the group E, and t — t~!. Thus the Sklyanin division rings are also closely
related to more classical ones.

There are several definitions of dimension for division rings. The first
one, the GK transcendence degree, was introduced by Gelfand and Kirillov
[GK,Z1]. They used this notion to distinguish the fields of fractions of
the Weyl algebras A,. One can also define the dimension of D to be its
projective dimension as a module over D® D°P? [Re,Ro,St]. Recently Zhang
(22] found an elegant definition (ZD) for which it is easier to prove some
general properties: Let D be a division ring over a field k. Then zd(D) > r
if there exists a finite dimensional k-subspace V of D containing 1 and a
constant ¢ such that for every finite dimensional subspace W of D,

dim(VW) > dim(W) + cdim(W)*".

As Zhang points out, the way to understand this definition intuitively is
to imagine dim(W) as the volume of a variable region in an r-dimensional
space. Then with an appropriate constant factor, dim(W)r—rl' is a lower
bound for the volume of the boundary 8W. The regions VW and W differ
only near the boundary.

Zhang has shown that zd(D) is at most equal to the GK transcendence
degree. It is not known whether or not the two are always equal. We will
call a Z2 division ring one which is finitely generated over k and such that
zd(D) is equal to 2.

Conjecture 5.2. The list 5.1 contains all Z2 division rings.

Zhang has shown that the division rings listed are distinct, and that certain
inclusions among them can not occur. For example, k,(z,y) is not a subfield
of D;. (Some of these facts were known before.) A convenient tool for
verifying them is the concept of prime divisor. A prime divisor of a Z2-
division ring D is a discrete valuation ring R whose residue field is a function
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field in one variable over k. The components of the point locus Y of X =
Proj A (see 3.1) define valuations of its function field, the ones classically
referred to as being “of the first kind” on X.

Proposition 5.3. Let D be one of the division rings 5.1, and suppose that
D is not finite over its center. Then D has at least one prime divisor. More
precisely,

(i) The prime divisors of k,(x,y) are determined by the values v(z),v(y),
which can be any pair of relatively prime integers. The residue field
of every prime divisor is a rational function field.

(ii) The Sklyanin division ring S(E, ) has exactly one prime divisor. Its
residue field is the function field k(E) of the elliptic curve.

(iii) The residue fleld of every prime divisor of D; is a rational function
field.

(iv) The division ring K{E, o) has exactly two prime divisors. Both have
the function field k(E) as residue field.

(v) There is exactly one prime divisor of D(C) whose residue fleld is the
function field k(C). All other prime divisors have rational residue

fields.

A prime divisor R comes equipped with an outer automorphism, which is
defined by conjugating by a generator of its maximal ideal M, and which
provides further information about the division ring. It also has an indexz,
the largest integer n such that R/M™ is commutative.

Assertion 5.3(i) is due to Zhang, and Willaert [W] has studied prime
divisors in D;. A proof of 5.3(ii) is outlined in Section 6. We don’t know
how to prove the existence of a prime divisor directly from the Z2 condition,
and indeed, even if one always exists, it may be difficult to give a direct proof
because the assertion is false when the assumption that D is not finite over
its center is removed. A proof of the existence might be a starting point for
classifying the Z2 division rings.

Some heuristic evidence for the conjecture that a Z2 division ring has a
prime divisor is provided by the following construction, which will produce
one in a few cases: Choose generators for a convenient finitely generated
subring S of D, and form a graded ring A by homogenizing the defining
relations, using a central variable z of degree 1. If we are very lucky, 4
will be noetherian and of GK-dimension 3, and z will generate a completely
prime ideal P. Then Theorem 1.2 identifies A/ P as a twisted homogeneous
coordinate ring of a curve. In that case P will be localizable, and the graded
localization Ap will be a graded valuation ring, whose subring of degree zero
is the required prime divisor.

The set P; of prime divisors of the Weyl skew field D; forms a fairly
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complicated picture, but one can give a combinatorial description in terms
of the birational geometry of the ordinary projective plane P? (see also
[W]). Consider prime divisors of the rational function field k(z,y) which are
centered on the line L at infinity in P2. Define the index of such a prime
divisor to be the order of pole of the double differential dz dy, and let P,
denote the set of prime divisors in k(z,y) of positive index.

Proposition 5.4. There is a bijective map P; — P, which preserves index.

A similar description can be given for the prime divisors of D(C). This
proposition was proved in joint work with Stafford. It is not very difficult,
but is too long to include here.

6. Evidence.

Besides the examples, Conjecture 4.1 is based on evidence collected by
three methods:

6.1,
(1) quantization, or deformation of commutative schemes,
(2) the theory of orders and the Brauer group, and
(3) Van den Bergh’s notion of noncommutative blowing up.

We have no additional evidence on which the rash Conjecture 5.2 that our
list of Z2 fields is complete can be based. It is just that no other division
rings have appeared up to now.

Discussion of the evidence.

(1) It is reasonable to suppose that a sizable family of noncommutative
surfaces would leave a trace as a “classical limit”, a commutative scheme.
If the conjecture is correct, then the limit surface must be rational or ruled.
We may test this conclusion by studying infinitesimal deformations of a
commutative surface. As is well known, the main invariant of a first order
deformation of a commutative surface Xy is its Poisson bracket, which is a
section of the anticanonical bundle A?Tx, = Ox,(—K). On many surfaces,
this bundle has no sections. The first assertion of the following proposi-
tion follows directly from the classification of commutative surfaces (see
[Be,BPV]). A proof of the second assertion is outlined in Section 8.

Proposition 6.2. Let X, be a smooth projective surface which admits a
noncommutative infinitesimal deformation X. Then
(i) Xo has an effective anticanonical divisor, and is one of the following:
a rational surface, a birationally ruled surface, an abelian surface, or
a K3 surface.
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(ii) If there exists an ample invertible sheaf on Xo which extends to an
invertible bimodule on X, then Xy is rational or birationally ruled.

The existence of an ample invertible bimodule is necessary in order for the
polarization of Xo to extend to the deformation, i.e., for the homogeneous
coordinate ring to deform compatibly (see 8.2 for a precise statement). Thus
the classical limit surfaces are of the expected types.

As is well known, the anticanonical divisors on a surface have arithmetic
genus 1. Those on ruled surfaces are described by the next proposition.

Proposition 6.3. Let Z be an effective anticanonical divisor on a ruled
surface X over a curve C of genus g.
(i) Ifg > 1, Z = 2D + F, where D is a section and F = 5 F; is a sum of
rulings.
(ii) If g = 1, then either Z has the above form, or else Z is the sum of two
disjoint sections.

Examples 2.3 and 2.4 are deformations of commutative surfaces determined
by Poisson brackets of the forms (ii) and (i) respectively.

(2) Studying orders can provide heuristic evidence for the conjecture that
various q-rational surfaces which arise, for example by quantization, should
be birationally equivalent. To obtained this evidence, we specialize ¢ to a
root of unity or ¢ to a translation of finite order. Then, in all cases which
have been investigated, the algebra A becomes finite over its center, and one
can test birational equivalence using known results about the Brauer group.
The description of deformations of orders is still being worked out, but
Ingalls has shown that if a maximal order whose center is a smooth surface
Z admits a non-PI deformation, then the anticanonical sheaf Oz(—K) must
have a nonzero section which vanishes on the ramification locus of the order.
So the center Z of X = Proj A is one of the surfaces listed in 6.2(i). For
instance, Z may be a rational surface with effective anti-canonical divisor,
and the anticanonical divisor may be an elliptic curve. The next proposition
is rather easy to prove:

Proposition 6.4. A smooth elliptic curve E has an essentially unique em-
bedding as a cubic curve in P?. Suppose that E is also embedded as an
anticanonical divisor E; into a rational surface Xy. Then the pair E; C X;
" is birationally equivalent to the embedding E; C X, of E as a plane cubic
in X2 = P2, In other words, the local rings of X; at the general points of
E; are isomorphic.

A similar result holds when the anticanonical divisor FE is a cycle of rational
curves [Lo]. Now if E is an elliptic curve on a rational surface X and if E'/E
is an etale covering of elliptic curves, then Brauer group computations [AM]
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show that there is a division ring D with center the rational function field
k(X ), whose branching data is this given covering, and that D is unique
up to k(X )-isomorphism. The proposition shows that, provided that E is
anticanonical, D is isomorphic to the division ring obtained from the cubic
embedding E C P2 This is what the conjecture would predict for the
Sklyanin division ring, if ¢ were allowed to have finite order.

(3) Having plausibility arguments for the existence of birational maps be-
tween certain of the projective schemes, a natural question is: What are
these birational maps? In the commutative case, a theorem of Zariski as-
serts that one can factor any birational transformation between smooth
surfaces into a succession of blowings up and down. The key ingredient
which has been provided by Van den Bergh [VdB2] is to describe the non-
commutative analogue of the blowing up of a surface. He has shown that in
favorable cases one can blow up a point p of the point locus of X, obtaining
another projective scheme X' in which the point p is replaced by an excep-
tional module. He has also shown how the blowing up process produces the
mysterious sporadic fat points which appear on special quantum quadrics

(see [S],[SSts]).

Because blowing up is an essentially projective construction, the defini-
tion is subtle and the blowing up does not lead to a projective scheme in
all cases. We refer to Van den Bergh's paper for the definitions. For the
purposes of this paper, it seems sufficient to illustrate the process by an
example. This is done in Section 9.

7. Prime Divisors of the Sklyanin Division Ring:

This section gives a proof of Proposition 5.3 (i1). We refer to the literature
for known results about the 3-dimensional Sklyanin algebra A(E, o). Recall
that o is assumed of infinite order. Let A denote the 3-Veronese of A(E, o).
There is a central element g of A(E, o) of degree 3 [ATV], and it has degree
1in A. Let Q = D[z,z7!;7] denote the graded fraction field of 4. One can
take for z any element of A; (or of Q; for that matter). A change of the
element z € @Q; changes 7 by an inner automorphism. Since g is central,
T = 1 when z = g. Thus 7 is inner for all choices of z.

Let R be a prime divisor of D, a discrete valuation whose residue field
K = R/M is a function field in one variable, and let v denote the associated
valuation. A discrete valuation is stable under inner automorphism. Thus
R is 7-stable, and R[z,2z7!; 7] is defined and is a subring of Q.

Lemma 7.1. We may choose z € A; so that A; C Rz. When this is done,
A C Rlz;7].
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Proof. With g as above, we choose u € A;¢g~! with v(u) minimal. Then
A1g7'u™! C R. So z = ug has the required property.

We denote the automorphism of the residue field K of R which is induced
by the action of 7 on R by 7 too, so that K[z,z71;7] = R[z,27}; 7] ®&r K.
Let A denote the image of A in K[z,z7!;7], and let = be the canonical
homomorphism A — A. Thus A4 is a graded domain.

Lemma 7.2. A = A/gA.

Proof. We use the fact that the Sklyanin algebra has no two-sided graded
ideal T such that gk(A/I) = 1. Since K[z,27';7] is a domain of GK-
dimension 2, gk(A4) < 2. It is at least 1 because z € A;, and it can’t be 1.
So gk(A) = 2, and 4 is the coordinate ring of a twisted curve, one of the
rings described in Theorem 1.2. We also know that A has no graded ideal I
such that gk(A/I) = 1, because A has none. Therefore every nonzero ideal
of A is cofinite. Let § be the residue in A of the central element ¢g. If §
were not 0, A/gA would have GK-dimension equal to gk(4) — 1 = 1. Since
this is impossible, g = 0 and ¢ is in the kernel of 7. Since g generates a
completely prime ideal in A and gk(A4/gA) =2, A = A/gA.

The set S of homogeneous elements of A which are not divisible by ¢
is an Ore set, and the degree zero part of the ring of fractions S~!A4 is
the valuation ring of the g-adic valuation which, on A, is given by the rule
v(a) =rifa = g"b and g does not divide b. By what has been proved above,
S—1A C R[z,271;7], because the image of s € S in the graded division ring
Kl[z,z71; 7] is not zero. Since (S™'A)y is a valuation ring, this ring must

be R.
8. Deformation of a Commutative Surface.

In order to keep the discussion brief, we restrict our attention to first
order deformations, those parametrized by the ring R = k[e], €2 = 0. We
denote by Ag the category of R-algebras A such that AQ gk is commutative.

Let us call a scheme Xg in Ap a commutative scheme Xj, together
with an extension of its structure sheaf Ox, to a sheaf of rings Ox in Apg,
compatibly with localization. The sheaf Ox will be called the structure
sheaf of X. By coherent sheaf on an R-scheme Xpg, we mean a sheaf of
finite right O x-modules which is compatible with localization. The scheme
X is smooth if Ox is flat over R and if X is smooth. We write O = Oy,
Oo = Ox,, and we denote the tangent sheaf on Xo by Tp.

Because Xp is commutative, the commutator [z,y] on O can be viewed
as a skew symmetric map a : Oy x Og — Oy which is a derivation in each
variable. We call such a skew derivation a bracket. The next proposition is
standard.
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Proposition 8.1.

(i) Let Xy be a smooth scheme over k. The set of brackets on X, is
classified by H®(Xo, A?Tp).

(ii) If a bracket « is given, then a smooth extension of X¢ to R with
commutator a exists locally. The obstruction to its existence globally
lies in H*(Xo,To). If the obstruction vanishes, then the isomorphism
classes of of extensions X whose commutators are the given bracket
form a principal homogeneous space under H'(X,,Tp).

(iii) For any smooth extension X, the sheaf Aut(O) of local automorphisms
of X which reduce to the identity on Xq is isomorphic to Tp.

The first assertion of Proposition 6.2 follows from (ii) and the classification
of surfaces [Be,BPV].

Suppose that a smooth extension X is given, and that Xo is projective,
with ample line bundle Lg. We consider the problem of extending this
polarization to X, so as to obtain a noncommutative projective scheme in
the sense of [AZ]. What we want is an R-linear, ample autoequivalence
s of the category mod-X of coherent sheaves over X which extends the
polarization sg = - ®o, Lo of X¢ defined by Ly. We call an (O, O)-bimodule
L invertible if R acts centrally on L, L is locally isomorphic to O as left and
as right module, and Ly = L @g k is a central Op-bimodule.

Proposition 8.2. Let X be a scheme in Ag, and let Ly be an invertible
sheaf on Xo. Let s be an autoequivalence of mod-X which extends the
autoequivalence sg of mod-Xq defined by Lg.
(i) There is an invertible O-bimodule L such that s = -®oL and LOgk =~
Lo. If s is ample, then so is s.
(ii) With L as above, set A = @ H°(X,L®") and A° = @ H(Xo,LS™).
Then A is a noetherian graded R-algebra, Asg is R-flat, and AsoQk =
A

We analyze the problem of extending Og-bimodule Lg to O in two steps.
First, we extend the right module structure. Right O-modules locally iso-
morphic to O are classified by H!(X,0*), and there is an exact sequence

0= 0F 250 500

Thus, as in the commutative case, the obstruction to extending the right
module Lo lies in H2(X,Op), and if it is zero, then the group H!(X,Op)
operates transitively on the set of classes of extensions. This is a standard
situation.

Next, we consider the left module structure of an invertible right module
Lo. The commutant £ = EndLe is locally isomorphic to O. More precisely,



